The Evolving Role of Reticulated Platelets

Kyle Riding, PhD, MLS(ASCP)CM
University of Central Florida

Session Objectives

• Recall the process involved in megakaryopoiesis and thrombocytopoiesis

• Explain the various methods involved in determining reticulated platelet concentrations

• Discuss the clinical significance of reticulated platelets

Platelets

• Thrombocytopoiesis
 • The formation of megakaryocytic cell fragments
 • Stimulated by IL-6 and IL-11
 • The megakaryocyte forms a proplatelet process that pieces between lining endothelial cells

Platelets

• Megakaryocytopoiesis
 • Occurs within bone marrow
 • Stimulated by thrombopoietin (TPO)
Anatomy of a Platelet

Thrombocytopenia

- Platelet count below the 2.5th lower percentile of normal
 - Lower limit = 150,000/uL (NHANES III)
 - Spontaneous bleeding usually does not occur until counts <20,000/uL
- Three major etiologies:
 1. Impaired or Decreased Production
 2. Increased Destruction
 3. Abnormalities of Distribution

Thrombocytopenia

<table>
<thead>
<tr>
<th>Impaired Production</th>
<th>Increased Destruction</th>
<th>Distribution Abnorm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernard-Soulier Syndrome</td>
<td>Immune</td>
<td>Inc. Splenic Sequestration</td>
</tr>
<tr>
<td>Fanconi Anemia</td>
<td>ITP</td>
<td>Hypothermia</td>
</tr>
<tr>
<td>Wiskott-Aldrich Syndrome</td>
<td>HIT</td>
<td>Loss of Platelets</td>
</tr>
<tr>
<td>May-Hegglin Anomaly</td>
<td>Drug-Induced</td>
<td>Massive Blood Transfusion</td>
</tr>
<tr>
<td>Megaloblastic Anemia</td>
<td>Non-Immune</td>
<td></td>
</tr>
<tr>
<td>Viral-Induced</td>
<td>TTP</td>
<td></td>
</tr>
<tr>
<td>Neonatal</td>
<td>DIC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HUS</td>
<td></td>
</tr>
</tbody>
</table>

Determining Etiology

- First step: Physician performs history and physical to ID:
 - family history
 - recent exposures to viruses/drugs
 - Organomegaly
 - Bleeding locations

Determining Etiology

- Second Step: Laboratory Examination
 - Review of a peripheral blood smear is still the most important component!
 - Follow-up testing frequently required
 - BM aspirate examination may be required to clarify etiology

Algorithm for workup of thrombocytopenia based on observation of the peripheral blood film.
Example: Suspected ITP

- CBC with Retic
- Peripheral Blood Film
- Immunoglobulin levels
- Bone Marrow Exam (for older patients)
- DAT
- Tests Inf. Agents (ex. HIV, HCV, H. pylori)

Issues with Platelet Counts

- Automated cell counters produce reliable counts except in thrombocytopenia
 - Well that’s helpful….
- Microscopic platelet estimates help confirm results from cell counters
 - But that takes time from an already busy staff…
- Platelet estimates can be accomplished in various manners
 - Quick literature search revealed 5 methods

Moving Forward

- Based upon the current landscape we need several things:
 1. Better accuracy at lower platelet counts
 - Segal et al (2012) study showed that overestimation still occurs
 2. Increased efficiency in providing clinically useful data for diagnosis

Issues with Platelet Counts

- Three problems with current state of platelet counts:
 1. Analytical reliability of automated counts during thrombocytopenia
 2. Turn-around-time for platelet estimates to confirm the counts
 3. Further follow-up testing still required

Moving Forward

- Increasing accuracy of lower platelet counts needs further work
 - Optical and electrical impedance methods are still inadequate
- Increased efficiency in data production
 - RETICULATED PLATELETS?!!

Reticulated Platelets

- First characterized in 1967
- Newly released platelets contain residual RNA
 - Analogous to reticulocytes
Reticulated Platelets

- Methods:
 - Flow Cytometry – Newer Methods
 - Sysmex’s Immature Platelet Fraction (IPF) was first to market
 - Uses proprietary mix of polymethine and oxazine
 - Pass sample through laser to obtain forward scatter (size) and fluorescence (RNA content)
 - Gating discriminates IPF
 - AUTOMATED!

- Methods
 - Flow Cytometry – Older Methods
 - Used thiazole orange to stain the nucleic acid content of platelets
 - Couple with CD41 or CD61
 - The fluorescent stain also stains some contents of dense granules
 - Falsely elevated counts
 - Expensive and labor-intensive

- Methods
 - New Methylene Blue Stain
 - First method used for detection
 - Same concept as reticulocyte
 - Would you want to do this??

- Methods
 - Flow Cytometry – Newer Methods
 - Abbott Cell-Dyn Sapphire was second to market with its reticulated platelet (rPT)
 - Uses proprietary CD4K530 dye to stain RNA of the platelets
 - Uses laser to detect size and fluorescence
 - Dependent upon presence of RBC
 - AUTOMATED!
What Now?

• Reticulated Platelets can now be incorporated into routine practice

• Does the parameter give clinically useful information??

Thrombocytopenia

<table>
<thead>
<tr>
<th>Impaired Production</th>
<th>Increased Destruction</th>
<th>Distribution Abnorm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernard-Soulier Syndrome</td>
<td>Immune</td>
<td>Inc. Splemic Sequestration</td>
</tr>
<tr>
<td>Fanconi Anemia</td>
<td>ITP</td>
<td>Hyperthermia</td>
</tr>
<tr>
<td>Wiskott-Aldrich Syndrome</td>
<td>HIT</td>
<td>Loss of Platelets</td>
</tr>
<tr>
<td>May-Hegglin Anomaly</td>
<td>Drug-Induced</td>
<td>Massive Blood Transfusion</td>
</tr>
<tr>
<td>Megaloblastic Anemia</td>
<td>Non-Immune</td>
<td></td>
</tr>
<tr>
<td>Viral Induced</td>
<td>TTP</td>
<td></td>
</tr>
<tr>
<td>Neutrophil</td>
<td>DIC</td>
<td></td>
</tr>
<tr>
<td>Chemotherapy-Induced</td>
<td>HUS</td>
<td></td>
</tr>
</tbody>
</table>

Clinical Utility

• Initial Assessment of Thrombocytopenia
 - Clinician most likely concerned with cause being of hyper destructive or hypoplastic etiologies (to start)
 - Kurata et al (2001) found that relative reticulated platelet counts were excellent at diagnosing hyper destructive disorders
 - Measuring TPO and relative reticulated platelets simultaneously was found to be helpful in discriminating the cause of thrombocytopenia

So What?

Who Cares?

What about specific platelets disorders?

Clinical Utility

• Viral-Induced Thrombocytopenia
 - Hepatitis C can lead thrombocytopenia
 - Three proposed mechanisms:
 - TPO Suppression/Marrow Suppression
 - Autoimmune Destruction
 - Increased Sequestration

Clinical Utility

• Viral-Induced Thrombocytopenia
 - Zucker et al showed that IPF was better at distinguishing cause of thrombocytopenia
 - Increased %IPF correlated to autoimmune destruction of platelets
 - Decreased %IPF correlated to bone marrow suppression
 - Note: TPO levels were not associated to thrombocytopenia in this population
Clinical Utility

- Neonatal Thrombocytopenia
 - Develops due to fetal exposure to:
 - CMV
 - HIV
 - Hepatitis
 - Toxoplasma
 - Rubella
 - Certain Drugs (e.g., chlorothiazide)
 - Exposure inhibits megakaryocytes and precursors from undergoing effective thrombocytopoiesis

Clinical Utility

- Immune-Mediated Thrombocytopenic Purpura
 - Decrease in number of circulating platelets due to immune destruction of the platelets
 - Causes increase in thrombocytopoiesis to compensate (has no effect)

Clinical Utility

- Cremer et al. noted that this condition is frequently seen in NICU's
 - Increases risk of adverse outcomes and increases frequency of blood collection
 - %IPF<8% increased risk of platelets dropping > 50,000/uL within one day
 - Relative Risk = 4.7
 - %IPF>8% rarely indicated risk of worsening thrombocytopenia
 - 5 out of 99

Clinical Utility

- Psaila et al. found that patients with ITP had higher %IPF than controls
 - Indicative of increased thrombocytopoiesis
 - Treatment caused increase in absolute IPF but not in %IPF
 - Agrees with previous research by Barsam et al.

Clinical Utility

- Post-Chemotherapy Platelet Recovery
 - Use of chemotherapy causes thrombocytopenia due to decreased number of megakaryocytes
 - Timing of platelet recovery varies widely from patient-to-patient and has made the use of prophylactic platelet transfusions difficult to manage
Clinical Utility

- Post-Chemotherapy Platelet Recovery
 - Wang et al (2002) used a calculated measure called the reticulated platelet maturation index (RP-MI)
 - Followed platelet counts and RP-MI from early in the nadir period to when recovery (inc >20 x 10^9/L) began
 - RP-MI remained low in the earliest nadir period when recovery was not imminent
 - RP and RP-MI increased when recovery was imminent

- Acute Coronary Syndrome
 - Platelets play a role in the process of atherosclerosis

Conclusions

- Reticulated Platelets are platelets recently released into circulation
- Methods have existed since 1960’s but new automation is making measurement easier
- The clinical utility has great potential and research continues into their role in assessing thrombocytopenia

Clinical Utility

- Acute Coronary Syndrome
 - Funck-Jensen et al (2012) found that increases in the immature platelet fraction indicated an elevated risk of acute myocardial infarction
 - Increased platelet turnover \(\rightarrow \) Increased need

References