Racial Disparity in Healthcare: A Focus on Hemodialysis Patients

Steph Jacobson DCLS, MLS (ASCP)^{CM}, AHI (AMT) Associate Professor MS MLS Leadership Graduate Program University of Cincinnati

University of CINCINNATI

Minority Health and Health Disparities Definitions

- National Institutes of Health Minority Health and Health Disparities (NIMHD)
 - Minority Health Research
 - Health Disparity Research

3

1

Health Disparity Research

A multi-disciplinary field of study devoted to:

- Gaining greater scientific knowledge about the influence of health determinants.
- Understanding the role of mechanisms.
- Determining how this knowledge is translated into interventions to reduce or eliminate adverse health outcomes.

Minority Health Research

The scientific investigation of singular and combinations of attributes, characteristics, behaviors, biology, and societal and environmental factors that influence the health of minority racial and/or ethnic population(s), including within-group or ethnic sub-populations, with the goals of improving health and preventing disease.

1. Define Racial Disparity.

outcome measures.

with financial burden.

6

2

Objectives

3. Correlate the impact of RRT outcome measures

2. Discuss Racial Disparity in hemodialysis

Stereotypes, Prejudice & Discrimination

Bias in Healthcare

17

19

Ø

Background: Dialysis Adequacy

- 3 tests
 - Urea reduction ratio (URR)
 - Kt/V ratio
 - Time on dialysis
- · Patients with lower URR and Kt/V values had more health complications and greater risk of death
- Race is not documented as an evaluation metric in the NIDDK or KDOQI guidelines for dialysis adequacy.

G

CINCINNATI

Background: Anemia Management

- Anemia is among the most common complications of CKD and ESRD
- Develops from
 - · decreased renal synthesis of erythropoietin
 - iatrogenic

23

 Race is a variable in the baseline characteristics for anemia evaluation

University of CINCINNATI

Background: Nutrition Markers

- Albumin is considered one of the most important, comprehensive nutrition markers of survival for HD patients
- · Predictive marker with a strong association for mortality
- Electrolyte abnormalities are present in 3%-11% of all CKD patients
- Intricate physiology
 - · calcium, phosphorus, and parathyroid hormone and concluded
 - improving acid-base control helped improve symptoms of secondary hyperparathyroidism

24

Why Racial Bias in Hemodialysis?

- To evaluate clinical and financial impact of acidbase status for dialysis adequacy, anemia management, nutritional markers of hemodialysis patients
- 2. To determine if the utilization frequency are associated with racial disparity.

University of CINCINNATI

26

African American

C

CINCINNATI

N = 28 49%

Significant

Pearson χ^2 (3, N = 326) = 17.61, p = .001, ϕ = .23 F(3, 322) = 3.03, p = .03

1 = 60

Omnibus Chi-Square analysis

One-way ANOVA Post Hoc Dunnett's C

AAA

33

n/White

Bar Chart

1 Native America

3 African American

MH UTMB

(MH or UTMB)

Alacka Natio

Total

Ø

CINCINNATI

Crews et al (2018), Shen et al (2020), Ross et al (2006), & Benjamin et

Our study indicated that racial disparity is present in the poorly controlled acid-base status; predominantly the Native American/Alaska

al (2021) addresses racial disparity of acid load

>

۶

34

Native population

Results - Question 2

Table 1. ANOVA Table Results	

Variable (1-way ANOVA)	Significance	HoV	Result	Post Hoc	Effect
URR	.01	.01	F(3, 261) = 3.84, p = .01	Dunnett C	small
Kt/V	.00	.29	F(3, 246) = 6.94, p = .00	Tukey	medium
Ferritin	.00	.04	F(3, 322) = 13.69, p = .00	Dunnett C	medium
Ferritin Difference	.00	.25	F(3, 322) = 8.60, p = .00	Tukey	medium
Albumin	.00	.04	F(3, 322) = 11.20, p = .00	Dunnett C	medium
Albumin Difference	.00	.02	F(3, 322) = 8.29, p = .00	Dunnett C	medium
Potassium Difference	.04	.04	F(3, 322) = 2.78, p = .04	Dunnett C	small
Calcium	.03	.01	F(3, 322) = 2.93, p = .03	Dunnett C	small
Calcium Difference	.00	.03	F(3, 322) = 4.93, p = .00	Dunnett C	small
Phosphorus	.02	.20	F(3, 322) = 3.29, p = .02	Tukey	small
PTH	.00	.00	F(3, 322) = 13.29, p = .00	Dunnett C	medium
PTH Difference	.00	.00	F(3, 322) = 11.75, p = .00	Dunnett C	medium
Overall Nutrition Mgmt	.00	.03	F(3, 322) = 8.24, p = .00	Dunnett C	medium
Overall anemia/nutrition	.00	.22	F(3, 322) = 4.82, p = .00	Tukey	medium
Overall Dialysis	.00	.22	F(3, 246) = 5.88, p = .00	Tukey	medium
Variable (2-way ANOVA)					
Kt/V	.02	.12	F(7, 242) = 3.40, p = .02	Tukey	none
PTH	.02	.00	F(7, 318) = 3.32, p = .02	Dunnett C	none

37

Results – Question 3											
Table 2. Estimation of Financial Burden											
Test	Charge: Commercial Lab #1	Charge: Commercial Lab #2	Average of Commercial Lab charge	Number of Overutilization cases	Excess Financial Burden (\$\$)						
Hemoglobin	\$29.00	\$25.00	\$27.00	6751	\$182,277						
Ferritin	\$29.00	\$26.00	\$27.50	166	\$4,556						
Albumin	\$19.00	\$19.00	\$19.00	2323	\$44,137						
Potassium	\$33.00	\$25.00	\$29.00	7866	\$228,114						
Calcium	\$29.00	\$23.00	\$26.00	6290	\$163, 540						
Phosphorus	\$28.00	\$23.00	\$25.50	2610	\$66,555						
Parathyroid Hormone	\$64.00	\$59.00	\$61.50	722	\$44,383						

Estimated annual cost burden ~\$733,561

39

Discussion – Question 3

Results demonstrate racial disparities of financial burden

- The Native American/Alaska Native > 29% population, but 31% cost burden
- The Hispanic population
 15% of the study, but 21% cost burden
- ➤The African American population
 > 19% of the study, 12% cost burden

Discussion - Question 2

Native American/Alaska Native had the most patients not meeting efficiency standards; however, was the only race that reported on all patients

- No racial disparity noted for hemoglobin, but have been noted for ferritin studies
 - Our study supports this with significance of ferritin by race but not significant with hemoglobin by race
- Nutrition markers are used to monitor overall health status and used are predicative markers for mortality and dialysis quality overall.
- Poorly controlled acid-base status leads to an increase in the ordering practices of laboratory tests; however, this study did not find this correlation as no significance was found with any variable to acidbase status

38

Discussion – Question 3

- Poorly controlled acid-base status leads to an increase in poor outcomes, extrapolates to an increase in the ordering practices of laboratory tests
 - Reducing the number of routine laboratory tests draws from monthly to every 6 weeks, that an average cost savings of \$85 per patient year (or \$1.7 million for the 20,000 Canadian HD patients)
- Potential savings of \$380 per patient year
 \$135,102 for the 326 studied
- According to NIDDK (2020)-- Nearly 786,000 people in the United States are living with ESRD, with 71% on dialysis
 > approximately 558,060 people → ~\$212 Million

Discussion – Question 3

- According to NIDDK (2020)
 - Nearly 786,000 people in the United States are living with ESRD, with 71% on dialysis
 - ≻Approximately 558,060 people

→ ~\$212 Million

43

Not all health disparities integrated into the study

- ➢ Covid-19 pandemic
- Retrospective study Potential bias
- Convenience sample & population demographics
- Patient compliance with hemodialysis
- > Complications unrelated to hemodialysis
- Physician compliance with ordering of appropriate laboratory testing per KDOQI guidelines
- Not all information was in test results, several were narrative by nephrology team.
- Dialysis monitoring results integrated with diagnostic values

44

Implications

- Future research should focus on determining the reasons for deviation from the current guidelines
- > Assess whether current guidelines are appropriate
- More advanced statistical analysis, a larger cohort, and more racial groups represented
- More studies involving extensive analysis of charges, costs, and correlation with demographic groups is needed

Conclusion

Hemodialysis has the highest cost per patient of all modalities, it is important to adhere to current guidelines and review for appropriate test

This was a small study and this topic merits further consideration and research to improve patient care,

patient outcomes, and cost reduction

Use of templates to designate "dialysis" monitoring from diagnostic testing

45

Conclusion

The results of this study show racial disparity of 49.1% of Native American/Alaska Native population demonstrating poor control with acid-base status

- ▶ Racial disparity is present within test frequency utilization
 - Dialysis adequacy--however, may be confounded due to null counts present
 - Anemia Management—significant overutilization overall with ferritin showing racial disparity

Nutrition markers—significant overutilization overall with albumin, potassium, calcium, phosphorus; and PTH showing racial disparity

46

utilization